Definite Integrals

Examples

1. Express $\lim _{n \rightarrow \infty}\left[e^{-1+3 / n} \cdot \frac{3}{n}+e^{-1+6 / n} \cdot \frac{3}{n}+\cdots+e^{2} \cdot \frac{3}{n}\right]$ as a definite integral on $[-1,2]$.

Solution: If we divide up the interval of $[-1,2]$ into n intervals, then each subinterval is of length is $\frac{2-(-1)}{n}=\frac{3}{n}$. Using right endpoints, the first term looks like $f(-1+$ $3 / n) \cdot \frac{3}{n}$ and hence we see that $f(x)=e^{x}$. Thus, this limit is

$$
\int_{-1}^{2} e^{x} d x
$$

2. Express $\int_{-1}^{2} \cos (x) d x$ as a limit of right endpoint Riemann sums.

Solution: We split up the interval $[-1,2]$ into n intervals which are each of length $\frac{2-(-1)}{n}=\frac{3}{n}$. We start at -1 and end at 2 to get $[-1,-1+3 / n],[-1+3 / n,-1+$ $6 / n], \ldots,[2-3 / n, 2]$. Using the right endpoint method, we have that the integral is the limit

$$
\lim _{n \rightarrow \infty}\left[\cos (-1+3 / n) \cdot \frac{3}{n}+\cos (-1+6 / n) \cdot \frac{3}{n}+\cdots+\cos (2) \cdot \frac{3}{n}\right] .
$$

3. True FALSE The addition definite integration law was proved using derivative laws.
4. TRUE False The addition definite integration law was proved using limit laws.

Problems

5. Express $\lim _{n \rightarrow \infty}\left[\tan (-1+2 / n) \cdot \frac{2}{n}+\tan (-1+4 / n) \cdot \frac{2}{n}+\cdots+\tan (1) \cdot \frac{2}{n}\right]$ as a definite integral from -1 to 1 .

Solution: If we divide up the interval of $[-1,1]$ into n intervals, then each subinterval is of length is $\frac{1-(-1)}{n}=\frac{2}{n}$. Using right endpoints, the first term is $\tan (-1+2 / n) \cdot \frac{2}{n}$ and hence we see that $f(x)=\tan (x)$. Thus, this limit is

$$
\int_{-1}^{1} \tan (x) d x
$$

6. Express $\lim _{n \rightarrow \infty}\left[\frac{2^{3}}{n^{3}}+\frac{2 \cdot 2^{3}}{n^{3}}+\cdots+\frac{2^{3} n^{2}}{n^{3}}\right]$ as a definite integral from 0 to 2 .

Solution: If we divide up the interval of $[0,2]$ into n intervals, then each subinterval is of length is $\frac{2-0}{n}=\frac{2}{n}$. Using right endpoints, the first term is $\left(\frac{2}{n}\right)^{2} \cdot \frac{2}{n}$ and hence we see that $f(x)=x^{2}$. Thus, this limit is

$$
\int_{0}^{2} x^{2} d x
$$

7. Express $\lim _{n \rightarrow \infty}\left[\left(1+\frac{3}{n}+\frac{9}{n^{2}}\right) \cdot \frac{3}{n}+\left(1+\frac{6}{n}+\frac{36}{n^{2}}\right) \cdot \frac{3}{n}+\cdots+\left(1+3+3^{2}\right) \cdot \frac{3}{n}\right]$ as a definite integral from 0 to 3 .

Solution: If we divide up the interval of [0,3] into n intervals, then each subinterval is of length is $\frac{3-0}{n}=\frac{3}{n}$. Using right endpoints, the first term is $\left(1+\frac{3}{n}+\frac{9}{n^{2}}\right) \cdot \frac{3}{n}=$ $\left(1+\frac{3}{n}+\left(\frac{3}{n}\right)^{2}\right) \cdot \frac{3}{n}$ and hence we see that $f(x)=1+x+x^{2}$. Thus, this limit is

$$
\int_{0}^{3} 1+x+x^{2} d x
$$

8. Express $\int_{-1}^{3} \cos ^{2}(x) d x$ as a limit of right endpoint Riemann sums.

Solution: We split up the interval $[-1,3]$ into n intervals which are each of length $\frac{3-(-1)}{n}=\frac{4}{n}$. We start at -1 and end at 3 to get $[-1,-1+4 / n],[-1+4 / n,-1+$ $8 / n], \ldots,[3-4 / n, 3]$. Using the right endpoint method, we have that the integral is the limit

$$
\lim _{n \rightarrow \infty}\left[\cos ^{2}(-1+4 / n) \cdot \frac{4}{n}+\cos (-1+8 / n) \cdot \frac{4}{n}+\cdots+\cos (3) \cdot \frac{4}{n}\right]
$$

9. Express $\int_{-3}^{3}|x| d x$ as a limit of right endpoint Riemann sums.

Solution: We split up the interval $[-3,3]$ into n intervals which are each of length $\frac{3-(-3)}{n}=\frac{6}{n}$. We start at -3 and end at 3 to get $[-3,-3+6 / n],[-3+6 / n,-3+$ $12 / n], \ldots,[3-6 / n, 3]$. Using the right endpoint method, we have that the integral is the limit

$$
\lim _{n \rightarrow \infty}\left[|-3+6 / n| \cdot \frac{6}{n}+|-3+12 / n| \cdot \frac{6}{n}+\cdots+|3| \cdot \frac{6}{n}\right] .
$$

10. Express $\int_{-2}^{0}\left|x^{2}-x\right| d x$ as a limit of right endpoint Riemann sums.

Solution: We split up the interval $[-2,0]$ into n intervals which are each of length $\frac{0-(-2)}{n}=\frac{2}{n}$. We start at -2 and end at 0 to get $[-2,-2+2 / n],[-2+2 / n,-2+$ $4 / n], \ldots,[-2 / n, 0]$. Using the right endpoint method, we have that the integral is the limit

$$
\lim _{n \rightarrow \infty}\left[\left|(-2+2 / n)^{2}-(-2+2 / n)\right| \cdot \frac{2}{n}+\left|(-2+4 / n)^{2}-(-2+4 / n)\right| \cdot \frac{2}{n}+\cdots+\left|0^{2}-0\right| \cdot \frac{2}{n}\right]
$$

Fundamental Theorem of Calculus I

Examples

11. Evaluate the integral $\int_{2}^{5}\left(x^{2}+1\right) d x$.

Solution: An antiderivative of $x^{2}+1$ is $\frac{x^{3}}{3}+x=F(x)$. So

$$
\int_{2}^{5}\left(x^{2}+1\right) d x=F(5)-F(2)=\frac{125}{3}+5-\frac{8}{3}-2=\frac{117}{3}+3=39+3=42 .
$$

12. True FALSE Let $F(x)$ be defined on $[a, b]$ such that $F^{\prime}(x)=f(x)$ on (a, b), then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

13. True FALSE $\int_{-1}^{1} \frac{1}{x} d x=\left.\ln |x|\right|_{-1} ^{1}=1-1=0$.
14. True FALSE $\int f^{\prime}(x) d x=f(x)$.

Problems

15. Evaluate the integral $\int_{0}^{4} \sqrt{x} d x$.

Solution: We have that $\int_{0}^{4} \sqrt{x} d x=\left.\frac{2}{3} \cdot x^{3 / 2}\right|_{0} ^{4}=\frac{2}{3}(8-0)=\frac{16}{3}$.
16. Evaluate the integral $\int_{1}^{8} \sqrt[3]{x} d x$.

Solution: We have

$$
\int_{1}^{8} \sqrt[3]{x}=\left.\frac{3}{4} x^{4 / 3}\right|_{1} ^{8}=\frac{3}{4}(16-1)=\frac{45}{4}
$$

17. Evaluate the integral $\int_{0}^{1} e^{x+1} d x$.

Solution: An antiderivative of e^{x+1} is itself so we can take

$$
\int_{0}^{1} e^{x+1} d x=\left.e^{x+1}\right|_{0} ^{1}=e^{2}-e^{1}=e^{2}-e
$$

18. Find the indefinite integral $\int\left(4 t^{3}+3 t^{2}\right) d t$.

Solution: The indefinite integral is

$$
\int\left(4 t^{3}+3 t^{2}\right) d t=t^{4}+t^{3}+C
$$

19. Find the indefinite integral $\int \frac{1}{3 x} d x$.

Solution: The indefinite integral is

$$
\int \frac{1}{3 x} d x=\frac{1}{3} \int \frac{1}{x} d x=\frac{\ln |x|}{3}+C .
$$

20. Find the indefinite integral $\int 2 \sin (2 \theta) d \theta$.

Solution: The indefinite integral is

$$
\int 2 \sin (2 \theta) d \theta=-\cos (2 \theta)+C
$$

